Towards Understanding Plant Response to Heavy Metal Stress
نویسندگان
چکیده
Metals like zinc, iron and copper are essential micronutrients required for a wide range of physiological processes in all plant organs for the activities of various metal-dependent enzymes and proteins. However, they can also be toxic at elevated levels. Metals like arsenic, mercury, cadmium and lead are nonessential and potentially highly toxic. Once the cytosolic metal concentration in plant turns out of control, phytotoxicity of heavy metal inhibits transpiration and photosynthesis, disturbs carbohydrate metabolism, and drives the secondary stresses like nutrition stress and oxidative stress, which collectively affect the plant development and growth (Krämer & Clemens, 2005). Plants have developed a complex network of highly effective homeostatic mechanisms that serve to control the uptake, accumulation, trafficking, and detoxification of metals. Components of this network have been identified continuously, including metal transporters in charge of metal uptake and vacuolar transport; chelators involved in metal detoxification via buffering the cytosolic metal concentrations; and chaperones helping delivery and trafficking of metal ions (Clemens, 2001). This chapter summarizes heavy metal stress and detoxification in plant. Special focus is given to metallothionein, yet vacuolar metal transporters, phytochelatins as well as certain organic acids, amino acids, and chaperones are also addressed with recent advances. Besides, heavy metal-induced oxidative stress and tolerance as an example of abiotic stress cross-talk will be discussed.
منابع مشابه
Contribution of proteomic studies towards understanding plant heavy metal stress response
Modulation of plant proteome composition is an inevitable process to cope with the environmental challenges including heavy metal (HM) stress. Soil and water contaminated with hazardous metals not only cause permanent and irreversible health problems, but also result substantial reduction in crop yields. In course of time, plants have evolved complex mechanisms to regulate the uptake, mobilizat...
متن کاملImpact of heavy metal stress on plants and the role of various defense elements
Heavy metal (HMs) pollution is currently one of the serious issues for the environment and agriculture as it has a direct impact on the production yield. This situation has gained a rapid momentum in the present era due to the population pressure, industrialization, and various anthropogenic activities which in turn lead to oxidative ...
متن کاملHeavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L.
Plant growth, pigment concentration, biochemical parameters and uptake of heavy metals were determined for Brassica juncea L. in response to cadmium and lead stress. The plant exhibited a decline in growth, chlorophyll content and carotenoids with Cd and Pb but Cd was found to be more detrimental than Pb treatment in B. juncea. The protein content was decreased by Cd (900 μM) to 95% and 44% by ...
متن کاملProteomics of heavy metal toxicity in plants.
Plants endure a variety of abiotic and biotic stresses, all of which cause major limitations to production. Among abiotic stressors, heavy metal contamination represents a global environmental problem endangering humans, animals, and plants. Exposure to heavy metals has been documented to induce changes in the expression of plant proteins. Proteins are macromolecules directly responsible for mo...
متن کاملPhosphate supply as a promoter of tolerance to arsenic in pearl millet
Many soils are contaminated by heavy metals, with arsenic posing serious environmental threat. Enrichment of soil with phosphate is believed to reduce the arsenic toxicity. However, only a few attempts have already been conducted towards understanding the precise role of phosphate in controlling As toxicity. Moreover, there is no adequate information on the effect of phosphate on As-induced...
متن کامل